Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method.
نویسندگان
چکیده
Temperature-based replica-exchange molecular dynamics (REMD), in which multiple simultaneous simulations, or replicas, are run at a range of temperatures, has become increasingly popular for exploring the energy landscape of biomolecular systems. The practical application of REMD toward systems of biomedical interest is often limited by the rapidly increasing number of replicas needed to model systems of larger size. Continuum solvent models, which replace the explicit modeling of solvent molecules with a mean-field approximation of solvation, decrease system size and correspondingly, the number of replicas, but can sometimes produce distortions of the free energy landscape. We present a hybrid implicit/explicit solvent REMD method in CHARMM in which replicas run in a purely explicit solvent regime while exchanges are implemented with a high-density GBMV2 implicit solvation model. Such a hybrid approach may be able to decrease the number of replicas needed to model larger systems while maintaining the accuracy of explicit solvent simulations. Toward that end, we run REMD using implicit solvent, explicit solvent, and our hybrid method, on three model systems: alanine dipeptide, a zwitterionic tetra-peptide, and a 10-residue β-hairpin peptide. We compare free energy landscape in each system derived from a variety of metrics including dihedral torsion angles, salt-bridge distance, and folding stability, and perform clustering to characterize the resulting structural ensembles. Our results identify discrepancies in the free-energy landscape between implicit and explicit solvent and evaluate the capability of the hybrid approach to decrease the number of replicas needed for REMD while reproducing the energy landscape of explicit solvent simulations.
منابع مشابه
Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulati...
متن کاملConvergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent.
Replica exchange methods (REMs) are increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. However, despite having been shown to be very effective on model systems, the application of REM in complex systems such as for the simulation of protein and peptide folding in explicit solvent has not been objectively tested in detail. Here we present a comp...
متن کاملMolecular Dynamics Simulations using Temperature Enhanced Essential dynamics Replica EXchange (TEE-REX)
Todays standard molecular dynamics (MD) simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large numbe...
متن کاملConstant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation
By utilizing Graphics Processing Units, we show that constant pH molecular dynamics simulations (CpHMD) run in Generalized Born (GB) implicit solvent for long time scales can yield poor pKa predictions as a result of sampling unrealistic conformations. To address this shortcoming, we present a method for performing constant pH molecular dynamics simulations (CpHMD) in explicit solvent using a d...
متن کاملEnhanced Conformational Sampling Using Replica Exchange with Concurrent Solute Scaling and Hamiltonian Biasing Realized in One Dimension
Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2012